Chlorella sp.

Natural Habitat

Division No. of Strains 
Kuching  49
Miri  2
Serian  9
Total  60


Algae Bioeconomy/Industry


Adam, M. (2005). Superfoods for optimum health: Chlorella and Spirulina. Truth Publishing International, Ltd.

Andrade, L.M., Andrade, C.J., Dias, M., Nascimento, C.A.O., Mendes, M.A. (2018). Chlorella and Spirulina microalgae as sources of functional foods, nutraceuticals, and food supplements; an overview. MOJ Food Process Technology, 6(2): 00144. doi: 10.15406/mojfpt.2018.06.00144.

Azaman, S.N. A., Nagao, N., Yusoff, F. M., Tan, S.W. and Yeap, S.K. (2017). A comparison of the morphological and biochemical characteristics of Chlorella sorokiana and Chlorella zofingiensis cultured under photoautotrophic and mixotrophic conditions. Peer Journal, 5:e3473

Guccione, A., Biondi, N., Sampietro, G., Rodolfi, L., Bassi, N. and Tredici, M. R. (2014). Chlorella for protein and biofuels: from strain selection to outdoor cultivation in a green wall panel photobioreactor. Biotechnology for Biofuels, 7(84), doi: 10.1186/1754-6834-7-84.

Huang, Y., Zhang, D., Xue, S., Wang, M., & Cong, W. (2016). The potential of microalgae lipids for edible oil production. Applied Biochemistry and Biotechnology, 180(3), 438–451. doi:10.1007/s12010-016-2108-6.

Koyande, A. K., Chew, K. W., Rambabu, K., Tao, Y., Chu, D. T. and Show, P. L. (2019). Microalgae: A potential alternative to health supplementation for humans. Food Science and Human Wellness, 8(1), 16-24.

Kwak, J.H., Baek, S.H., Woo, Y., Han, J.K., Kim, B.G., Kim, O.Y. & Lee, J.H. (2012). Beneficial immunostimulatory effect of short-term Chlorella supplementation: enhancement of natural killer cell activity and early inflammatory response (randomized, double-blinded, placebo-controlled trial). Nutritional Journal,11:53.

Liu, Z.Y., Wang, G.C., & Zhou, B.C. (2008). Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresource Technology, 99(11), 4717–4722. doi:10.1016/j.biortech.2007.09.073.

Masojidek, J. and Torzillo, G. (2014). Mass cultivation of freshwater microalgae. Reference Module in Earth Systems and Environmental Sciences, doi:

Mourelle, M. L., Gomez, C. P. and Legido, J. L. (2017). The potential use of marine microalgae and Cyanobacteria in cosmetics and thalassotherapy. Cosmetics, 4(4), 46.

Mobin, S. & Alam, F. (2017). Some promising microalgal species for commercial application: A review. Energy Procedia, 110,510-517.

Nemcova, Y. and Kalina, T. (2000). Cell wall development, microfibrils and pyrenoid structure in type strains of Chlorella vulgaris, C. kessleri, C. sorokiana compared with C. luteoviridis (Trebouxiophyceae, Chlorophyta). Algological Studies. 100, 95-105.

Nickelsen, K. (2007). Otto Warburg’s first approach to photosynthesis. Photosynthesis Research, 92(1), 109-120, doi:10.1007/s11120-007-9163-3.

Safi, D. R., Merah, O., Zabib, B. and Pontalier, P. Y. (2014). Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. renewable and sustainable. Energy Reviews. 35, 265-278.

Silva, J., Alves, C., Pinteus, S., Reboleira, J., Pedrosa, R. and Bernardino, S. (2019). Chapter 3.10- Chlorella.  In Nabavi, S. M. and Silva, A. S. (Eds), Nontavitamin and Nonmineral Nutritional Supplements (pp. 583).

Taha, T. M. and Youssef, M. A. (2015). Improvement of growth parameters of Zea mays and properties of soil inoculated with two Chlorella Species. Report and Opinion, 7(8), 22-27.

Varfolomeev, S. D., & Wasserman, L. A. (2011). Microalgae as source of biofuel, food, fodder, and medicines. Applied Biochemistry and Microbiology, 47(9), 789–807. doi:10.1134/s0003683811090079.

Zeller, M. A., Hunt, R., Jones, A., & Sharma, S. (2013). Bioplastics and their thermoplastic blends from Spirulina and Chlorella microalgae. Journal of Applied Polymer Science, 130(5), 3263–3275. doi:10.1002/app.39559

Jumlah Paparan: 709